HR17B-160/30三较熔断器式负荷隔离开关,HR17B熔断器式负荷隔离开关,160A三较熔断器式负荷隔离开关,HR17B隔离开关,HR17B-160/30熔断器式负荷隔离开关其额定绝缘电压交流50Hz、800V,额定工作电压至690V,额定工作电流至630A,主要用于有高短路电流的配电电路和电动机电路中用作电源开关、隔离开关和应急开关,并作交流电路保护之用。本开关不宜作直接开闭单台电动机之用。
开关额定限制短路电流500V时100kA,690V时50kA。
开关符合国家标准GB14048.3和国际标准IEC/EN60947-3。
熔断器俗称保险丝或保险管。较早的保险丝于一百多年前由爱迪生发明,由于当时的工业技术不发达白炽灯很贵重,所以,较初是将它用保险丝来保护价格昂贵的白炽灯的。
熔断器保护电子设备不受过电流的伤害,也可避免电子设备因内部故障所引起的严重伤害。因此,每个熔断器上皆有额定规格,当电流**过额定规格时保险丝将会熔断。当介于常规不熔断电流与相关标准规定的额定分断能力(的电流)之间的电流作用于熔断器时,熔断器应能满意地工作,而且不会危及周围环境。
熔断器被安置的电路的预期故障电流必须小于标准规定的额定分断能力电流,否则,当故障发生熔断器熔断时会出现持续飞弧、引燃、熔断器烧毁、连同接触件一起熔融、熔断器标记无法辨认等现象。当然,劣质熔断器的分断能力达不到标准规定的要求,使用时同样会发生危害。
电子设备中使用的保护元件除熔断电阻器外,还有普通熔断器、热熔断器和自恢复熔断器等。保护元件一般是串接在电路中,它在电路中出现过电流、过电压或过热等异常现象时,会立即熔断而起到保护作用,可防止故障进一步扩大。
(一) 普通熔断器
普通熔断器俗称保险丝或保险管,属于熔断不可恢复型熔断器,熔断后只能更换新的熔断器。它在电路中“F”或“FU”表示。
普通熔断器的结构特点
普通熔断器通常由玻璃管、金属帽和熔丝构成。两只金属帽套在玻璃管两端,熔丝(采用低熔点金属材料制作)装在玻璃管内,其两端分别焊接在两只金属帽的中心孔上。使用时将熔断器装入保险座中、与电路串联即可。
熔断器的熔丝多数为直线状,只有彩色电视机、电脑显示器中使用的延迟式熔断器为螺旋状熔丝。
普通熔断器的主要参数
普通熔断器的主要参数有额定电流、额定电压、环境温度和反应速度等。额定电流也称致断容量,是指熔断器在额定电压下能熔断的电流值。熔断器的正常工作电流庆低于额定电流30%。国产熔断器的额定电流值通常直接标注在金属帽上,进口熔断器则用色环标注在玻璃管上。
额定电压是指熔断器的较调节作电压,它份为32V、125V、250V和600V四种规格。熔断器的实际工作电压应低于或等于额定电压值。若熔断器的工作电压值**过额定电压值,则会迅速熔断。
熔断器的电流承载能力的实验,是在25℃环境温度条件下进行的。熔断器的使用寿命与工作环境温度成反比。环境温度越高,熔断器的工作温度也越高,其寿命也越短。
反应速度是指熔断器对各种电负荷作出反应的迅速程度。熔断器按反应速度和性能可分为正常响应型、延时断开型、快动作型和电流限制型。
(二)热熔断器
热熔断器也称温度保险丝,是一种不可恢复式过热保险元件,广泛应用于各类电炊具、电动机、洗衣机、电风扇、电源变压器等电子产品中。热熔断器按感温体材料的不同,可分为低熔点合金型热熔断器、**化合物型热熔断器和塑料-金属型热熔断器。
低熔点合金型热熔断器
低熔点合金型热熔断器的感温体由具有固定熔点的合金材料加工而成。当温度达到合金熔点时,感温体则自动熔断,将被保护电路断开。根据其结构的不同,低熔点合金型热低熔点合金型热熔断器又可分为重力式、表面张力式和弹簧反应式三种。
**化合物型热熔断器
**化合物型热熔断器由感温体、可动电极、弹簧等组成。感温体是用高纯度、低熔断温度范围的**化合物加工而成。正常时,可动电极与固定端点相接触,电路被熔断器接通;当温度达到熔点时,感温体自动熔断,可动电极在弹簧的作用下与固定端点断开,将电路断开而进行保护。
塑料-金属型热熔断器
塑料-金属型热熔断器采用表面张力式结构,其感温体的电阻值几乎为0。当工作温度达到设定温度时,感温体的电阻值会突然增大,阻止电流通过。
(三)自恢复熔断器
自恢复熔断器是一种个有过流、过热保护功能的新型保险元件,可以多次重复使用。
自恢复熔断器的结构原理
自恢复熔断器属于正温度系数的PTC热敏元件,由高分子聚合物及导电材料等混合制成,它串联在电路中,可以代替传统的熔断器。
在电路正常工作时,自恢复熔断器处于导通状态。当电路出现过电流故障时,熔断器自身温度将迅速上升,聚合材料受热后迅速进入高阻状态,由导体变成绝缘体,切断电路中的电流,使电路进入保护状态。当故障消失、自恢复熔断器冷却后,它又呈低阻导通状态,自动接通电路。
自恢复熔断器的动作速度与异常电流的大小及环境温度有关,电流越大、温度越高,则动作速度也越快。
常用的自恢复熔断器
自恢复熔断器有插件式、表面安装式、片式等结构外形。常用的插件式自恢复熔断器有RGE系列、RXE系列、RUE系列、RUSR系列等,用于电脑及一般电器。
熔断器与断路器的应用区别:需要说明只有将熔断器与开关配合起来,与断路器进行比较才是公平的,故本文以适用在配电系统的NH-gG型熔断器及其开关来进行阐述。NH是指高分断能力的低压熔断器的统称,NHgG型熔断器则称高分断(HRC)熔断器。
1、使用和维护的方便性
在低压配电终端,电气故障会由过载或其他原因而引起,微型断路器可在过载后再合闸,其操作简便,因此选用小型断路器作为保护电器比较合适。而对熔断器开关则必须更换熔断器后才能重新投入使用,有时会发生一时没有合适的熔断器进行更换的情况。
但对于由专业人士维护的低压配电系统和普通低压柜而言,断路器则没有这些优势了。首先这些场所故障发生不频繁;其次发生故障后不检查就直接合上断路器会有很大的危险,尤其是短路故障。熔断器在发生不同故障时,其状态也不同,为判断事故原因提供了依据。
2、短路防护
一般NH-gG型熔断器具有100kA以上的分断能力,大大**过大多数断路器,而普通断路器的分断能力在25~35kA,如果增加分断能力,则价格成倍增加。熔断器限流作用很强,断路器也难以相提并论,当故障电流还没来得及达到较高值时电路就已经被熔断器所切断,因此它能够为电气设备、电缆及电动机等提供安全保护,避免它们在短路时遭受电动力和热效应的损坏,可大大降低短路电流对系统所产生的动稳定、热稳定要求。断路器是机械器件,其分断能力和速度受限于机械部件的动作过程,这是断路器分断能力低于熔断器的原因。总的来说断路器不如熔断器的限流特性好,切断故障电流的速度也不如熔断器快,熔断器与断路器的特性比较如图1所示。此外,在工作电压为400V、500V和690V时,熔断器分断能力几乎不受影响,而这方面断路器就相形见绌了。当工作电压较高时,大多数断路器的分断能力会显着下降。通常,在电压为690V时的分断能力要比在400V时小30%。以某品牌塑壳式断路器为例,其工作电压在400V时分断能力为50kA,但工作电压在690V时分断能力只有10kA。正是熔断器的高分断能力,在欧 洲,其常常作为分断能力低的微型断路器或塑壳 式断路器的后备保护,而且熔断器切断短路故障时无飞弧。
3、过载防护
对于电动机系统,是采用热继电器来防护过载的,而非aM型熔断器或断路器,此处断路器的过载防护功能并不适用,不能以此来说明熔断器无过载防护功能,况且熔断器类开关可以解决熔断器缺相的问题。
对于额定电流大于16A的gG型熔断器的约定熔断电流为1.6In,有人认为这样有时难以满足过载防护公式I2≤1.45Iz,电线电缆截面积就要选择比整定同样电流的断路器要大,特别指出这是熔断器的缺点。这个问题要辩证地看,按载流量选择电缆截面积较小,却带来了将来扩容的麻烦,熔断器及其开关多用在配电干线的电源侧,按经济电流密度选择电缆截面积,虽工程造价略有增加,但电缆运行费用降低,建设增加费用在一定期限内可收回,而且解决了前述扩容麻烦的问题。需要说明的是,对于过载防护公式I2≤1.45Iz而言,执行德国DIN标准的gG类熔断器是能够满足该公式的。
4、上下级选择性
对于符合现行国家标准GB13539(等同IEC60269)的gG类熔断器选择性是容易实现的,只要上级熔断器与下级熔断器的整定电流之比不小于1.6。例如一个gG型额定电流为100A的熔断器对于一个gG型额定电流为160A的熔断器来说,保证了完全选择性。甚至有些国外产品,上级熔断器与下级熔断器整定电流之比可以做到1.25,也能够实现上下级具有完全选择性。上下级选择性如图2所示。对于上下级两个断路器来说,实现同样的功能就比较困难。从技术上来说,在大多数情况下,能够实现上下级选择性的两个断路器规格之间的整定电流比值比熔断器之间的比值要大得多。如此一来增大各级电器元件的电流等级,会使电缆电线截面积加大,而且上下级两个断路器还必须是同一制造商、生产的同一代产品。
特别需要指出的是,只要是符合现行国家标准GB13539的gG型熔断器,即便上下级熔断器不是同一品牌也不会改变选择性,这是产品标准所规定的。
工程标准要求低压配电线路采用的上下级保护电器,其动作应具有选择性,各级之间应能协调配合。但实际工程多选择非选择性断路器,并不能实现上下级的选择性,如果选用选择性断路器,1个动辄就上万元人民币,与熔断器及开关共两三千元人民币相比,费用太高。为此我国相关电气*呼吁广大电气从业人员应重视这一问题,为何不考虑选用熔断器及其开关呢?
5、可靠性
熔断器的基本工作原理是在线路中连接熔丝,仅一个过电流就可使熔丝熔断以保护线路中其他装置。熔断器是静态保护装置,整个产品是密闭的。即使是在较繁杂的环境而且没有维修和保养的条件下,熔断器也可对电路进行长效且可靠的保护。熔断器的反应是按照物理规律和能量学原理进行的,不存在老化问题,因此只要电路出现故障,熔断器总能够断开。熔断器及其开关在技术设计上的简便性和其功能的物理原理保证了在时间上的可靠性。
相反,断路器的复杂机构在长时间使用后其可靠性会受影响。断路器在分断电流的过程中,全部为机械动作,很容易产生机械磨损和机械位移,造成运行不可靠及不稳定。而且断路器每跳闸一次,性能就会降低,必须要由专业人员进行维护甚至需要更换断路器的触头。当反复跳闸后,其保护性能有可能已经难以满足保护的要求。欧洲相关标准规定:断路器跳闸5次,必须强制更换,这也是熔断器在欧洲占大部分市场份额的原因之一。在高压系统中,断路器跳闸后,根据电力规程要检修,设备损害严重要更换,但在低压配电系统中,中国没有标准规定哪种情况需要更换断路器。